
S1 Supporting Information: �antifying the impact of COVID-19
control measures using a Bayesian model of physical distancing

Supplemental Methods

Full model de�nition

We developed an epidemiological model to describe the numbers of individuals who are: suscep-
tible ((); exposed to the virus (�1); exposed, pre-symptomatic, and infectious (�2); symptomatic
and infectious (� ); quarantined (&); and recovered or deceased (') over time (Fig 2). Recovered
individuals are assumed to be immune. �e model includes analogous variables for individuals
practising physical distancing, represented by subscript d, i.e. (d, �1d, �2d, �d,&d, and 'd. Physical
distancing reduces the frequency of contact between individuals (and hence between compart-
ments; Fig 2).

�e non-physical-distancing di�erential equations are:
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where V is the transmission parameter, � is the mean duration of the infectious period, 5 repre-
sents physical distancing,Dd andDA are the rates of movement to and from the physical distancing
compartments, :1 is the rate of movement from the �1 to �2 compartment, :2 is the rate of move-
ment from the �2 to � compartment, and @ is the quarantine rate for movement from the � to &
compartment.

In themodel without interventions (neither distancing nor quarantine), the basic reproductive
number '0b is V (�+1/:2), namely the transmission rate times the mean duration in the infectious
compartment.

�ere are six analogous equations for the physical distancing compartments (denoted by sub-
script d). �e physically distancing compartment (3 has a contact rate with infectious individuals
that is a fraction 5 of that for the ( compartment. �is factor appears twice: distancing individ-
uals contribute less to the force of infection and also are less likely to encounter others than
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non-distancing individuals, giving
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�e distancing strength (1 − 5 ) changes with time as distancing measures ramp up:

5 (C) =


1, C < C1,

52 +
C2 − C
C2 − C1

(1 − 52), C1 ≤ C < C2,
52, C ≥ C2.

(3)

We relate the observed cases to the model prevalence with an observation model in which the
observed cases are overdispersed and are comprised of contributions from those who became
symptomatic over the previous week. �e expected number of observed cases on day A is

`A = kA

∫ 45

0
:2

[
�2(A − B) + �2d(A − B)

]
F (B)dB, (4)

where F (B) is the density function for delay B and 45 is the maximum delay that needs to be
considered.Also,kA is the portion tested, which can change over time.

�enumber of reported cases each day is denoted�A , where A represents discrete days (whereas
C is continuous time in the model). We model dispersion using the NB2 parameterization of the
probability mass function [1]:

NB2(�A | `A , q) =
(
�A + q − 1

�A

) (
`A

`A + q

)�A (
q

`A + q

)q
, for A = 1, . . . , 42, (5)

in which the variance scales quadratically with the mean according to the (inverse) dispersion
parameter, q : Var[{�A }] = ` + `2/q .

�e model is �t to the data in a Bayesian context to estimate parameters '0b, 52, and q , with
52 being of particular interest as the fraction of normal contacts for those individuals who are
physical distancing. �e joint posterior distribution given the case counts {�A } is

P
(
'0b, 52, q |{�A }

)
∝ P

(
{�A }|'0b, 52, q

)
P('0b)P(52)P(q), (6)

where the term P({�A }|'0b, 52, q) refers to the negative binomial data likelihood with (inverse)
dispersion parameter q , and the terms P('0b), P(52), and P(q) refer to prior distributions.
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We placed weakly informative priors on '0b, 52, and q as follows. We chose a prior
on '0b to encompass values commonly published in the literature for SARS-CoV-2 [2, 3]:
Lognormal(log(2.6), 0.2). We chose a prior for 52 that resulted in a mean of 0.4 and a standard
deviation of 0.2, 52 ∼ Beta(2, 3), to represent a moderately strong reduction in contact fraction
while still being broad enough to encompass a wide range of values. We chose a prior on q to
constrain the model to avoid substantial prior mass on a large amount of over-dispersion (small
values of q): 1/

√
q ∼ Normal(0, 1) [4].

Initialization

Specifying initial conditions for the epidemiological model involves se�ing a total number of
infected people �0 at an initial point in time (February 1, 2020 for BC), which are divided among
the exposed and infected compartments. We de�ne 4 = Dd/(Dd +DA ) to be the fraction practising
physical distancing (4 = 0.83 in the base model). We derived this fraction distancing from the
Angus Reid Institute survey [5]: 89% of the 88% who believed that COVID-19 was a serious threat
were practicing distancing. �ere were three distancing questions: (1) keeping extra distance
(89% among those who took COVID-19 to be a serious threat vs. 66% among those who did not);
(2) not shaking hands or hugging (87% vs. 66%); and (3) avoiding public spaces (84% vs. 60%). If
we take a weighted average of these numbers we get 0.84. If we also assume that those who do
not take COVID-19 to be a serious threat perform distancing somewhat less diligently than those
who do then we get our 0.83, which also is a number that arises from using round numbers for
DA = 0.1 and D3 = 0.02: DA/(DA + D3).

To further avoid sharp initial transient behaviour we also initially distribute all individuals
among the distancing and non-distancing components, to give reasonable conditions for March
1 (Table A). �e model begins on February 1 with 8 cases, re�ecting a 10–30% chance of detection
[6] and very low reported cases at that time. We do not model introductions during February,
and instead we compensate for this with an elevated initial number of infectious cases.

Table A: Initial values

Non-distancing Distancing

Variable Initial de�nition Initial value Variable Initial de�nition Initial value

( (1 − 4) (# − �0) 849999 (d 4 (# − �0) 4249993
�1 0.4(1 − 4)�0 0.53 �1d 0.44�0 2.67
�2 0.1(1 − 4)�0 0.13 �2d 0.14�0 0.67
� 0.5(1 − 4)�0 0.67 �d 0.54�0 3.33
& 0 0.00 &d 0 0
' 0 0.00 'd 0 0

Determining the threshold contact rate

To determine the threshold fraction of normal contacts that would lead to expected increases
in prevalence, we applied the following approach (Figure J). (1) For a sequence of fractions of
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normal contacts (0.2, 0.4, 0.6, 0.8, 1.0), project the model posterior for 60 days into the future. (2)
Fit a linear regression to determine the slope of log(prevalence) vs. time (day) for the last 30 days
of the projection period for each of the fractions of normal contacts. (3) Fit a linear regression
to the slopes from the previous step against the fraction of normal contacts. (4) Use this ��ed
regression line to determine what fractional normal contacts would result in an expected change
in log prevalence of zero over time based on where the regression line crosses 0 on the y-axis
(Figure J).

Model validation

To test the model’s ability to recover the parameters and to test our implementation of the Stan
model, we repeatedly �t the model to data simulated from separate code in R. We inspected the
resulting posterior distributions for bias and coverage of the known true values and visually
inspected the resulting time series (e.g. Figure C and Figure D). Furthermore, we conducted
posterior predictive checks [7] to assess whether the observed data were consistent with data
generated by the model. Code to reproduce our analysis is available at https://github.com/
carolinecolijn/distancing-impact-covid19.

Regional modelling parameters and initialization

Table B: Regional modelling initialization, data properties, and priors.

BC NY FL WA CA NZ

First day of data Mar 1 Mar 4 Mar 5 Mar 1 Mar 5 Mar 15
Last day of data Apr 11 May 7 May 7 May 7 May 7 May 6
�0: incidents 30 days before day 1 8 0.5 1 1 1 0.001
52 prior: Beta(mean, SD) 0.4, 0.2 0.4, 0.2 0.4, 0.2 0.4, 0.2 0.4, 0.2 0.3, 0.2
'0b prior: Lognormal(logmean, SD) 2.6, 0.2 2.6, 0.2 2.6, 0.2 2.6, 0.2 2.6, 0.2 2.6, 0.2
1/

√
q prior: Normal(mean, SD) 0, 1 0, 1 0, 1 0, 1 0, 1 0, 1

52 ramp starting day prior mean Mar 15 Mar 13 Mar 16 Mar 11 Mar 12 Mar 18
52 ramp ending day prior mean Mar 22 Mar 28 Mar 28 Mar 23 Mar 24 Mar 26
Proportion distancing: DA/(DA + D3) 0.83 0.83 0.83 0.83 0.83 0.95
Delay shape 1.73 1.73 1.73 1.73 1.73 1.53
Delay scale 9.85 9.85 9.85 9.85 9.85 7.83
Sampling fraction 0.1/0.3 0.25 0.25 0.25 0.25 0.40
# : total population (millions) 5.1 19.45 21.48 7.6 39.51 4.95

�e physical distancing “ramp” (linear change in 52) starting and ending dates given in Table B
refer to lognormal mean prior dates; the standard deviation was 0.1 for each region. Start and end
priors were derived from policy events combined with inspection of the Google transit station
data[8], except in BC where we �xed the start and end dates. In all regions but BC and New
Zealand we did not have data for the distribution of the delay time between symptom onset and
case reporting, so we used BC parameters. Our �ts for the start and end of the distancing ramp
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therefore account for the use of BC delay shape and scale parameters, which may not match
testing in these regions. �ey also must account for ��ing a linear physical distancing ramp to a
process that may not be linear for all regions (e.g., Fig 5F).

We obtained US data from �e COVID Tracking Project [9] on May 7, 2020, and data from
NZ were obtained from the New Zealand Ministry of Health [10]. We do not have data to inform
the initial introduction of COVID-19 to jurisdictions, and the ODE modelling framework is not
well-suited to capture individual introductions and their secondary cases, so the initialization of
the model is necessarily approximate. We set an initial number of prevalent cases based on the
models’ �t for the �rst days of reported cases. We also do not have data on the portion of the
population engaged in distancing; this was set to BC values except for NZ where we assumed
that the strict physical distancing policies would result in a very high proportion of individual
distancing. Increasing the fraction to 0.95 improved the model �t, allowing cases to rise and fall
at the fast rate observed in the data. While the values of 52 that we estimate for the jurisdictions
likely depend on the fraction involved in distancing, the distance between the estimate and the
threshold is robust to this (Figure A illustrates the trade-o�; changing the fraction distancing
would change 52 and the threshold).

In BC we had information about changes in testing over time, and we did not have this in
other jurisdictions, so the sampling fractions were �xed over time. �is a�ects the modelled
prevalence but does not impact the conclusion about the contact fraction (Figure M). We used the
same priors for '0 and q as for BC, and other initialization as speci�ed in Table A.

Computing '0 analytically

We compute the basic reproduction number '0 for the full model, as a function of the model
parameters, using the Next-Generation method [11, 12]. We set 5 to be constant, dropping the
subscript 2, and set Dd = 1, 4 := Dd/(DA + Dd), and DA = (1 − 4)/4 . �e disease-free equilibrium is
n0 = ((1 − 4)#, 0, 0, 0, 0, 0, 4# , 0, 0, 0, 0, 0). We identify �1, �2, � , & , �1d, �2d, �d, &d as the infection
compartments, and denote the corresponding system by X .

We decompose X= F− V, where

F=


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0
0
0
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0
0
0


, V=


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−:2�2 + @� + �
�
+ � − (1−4)

4
�d

−@� + &

�
+& − (1−4)

4
&d

:1�13 − �1 + (1−4)4 �1d

−:1�13 + :2�2d − �2 + (1−4)4 �2d

−:2�2d + @�3 + �3
�
− � + (1−4)

4
�d

−@�d + &d
�
−& + (1−4)

4
&d


.

Linearization around n0 gives the following Jacobian matrices for Fand V respectively,
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� =



0 V (1 − 4) V (1 − 4) 0 0 5 V (1 − 4) 5 V (1 − 4) 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 5 V4 5 V4 0 0 5 2V4 5 2V4 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


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4
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0 −:2 @ + 1
�
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0

0 0 −@ 1
�
+ 1 0 0 0 − (1−4)

4

−1 0 0 :1 + (1−4)4 0 0 0
0 −1 0 0 −:1 :2 + (1−4)4 0 0
0 0 −1 0 0 −:2 @ + 1

�
+ (1−4)

4
0

0 0 0 −1 0 0 −@ 1
�
+ (1−4)

4


.

We use SageMath [13] via CoCalc [14] to compute the spectral radius of �+ −1 and simplify its
expression. We �nd that

'0 = V
44(1 − 4) (1 − 5 )2:1:2

(4 ( 1
�
+ @) + 1) (4:1 + 1) (4:2 + 1)

+ V (4 5 + 1 − 4)
2

1
�
+ @

+

V
4:1(4 5 + 1 − 4)2

:2(4:1 + 1) (4:2 + 1)
+ V 4 (4 5 + 1 − 4)2
(4:1 + 1) (4:2 + 1)

+

V
(4 5 + 1 − 4)2

:2(4:1 + 1) (4:2 + 1)
+ V 4

2:1(4 5 2 + 1 − 4)
(4:1 + 1) (4:2 + 1)

. (7)

Figure A shows an example of the relation between '0 and the model parameters. �e �xed
parameters are taken from Table 1, with V computed as '0b/(� + 1/:2).
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Figure A: '0 as a function of 4 and 5 , with �xed parameters V = 0.433, � = 5, @ = 0.05, :1 = 0.2,
and :2 = 1. �e black contours represent '0 = 1 and '0 = 2, respectively.
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Likelihood estimation of parameters for the delay distribution

We derive a likelihood function to estimate the shape and scale parameters of the Weibull de-
lay distribution using the case-speci�c data that are available for some individual cases. �ese
data are right-truncated (Fig 1), in that we are not aware of cases that will be reported in the
future, yet their symptoms have already occurred in the past. �is is dealt with by the likelihood
function. �e resulting maximum likelihood estimates are then used in the observation model to
relate reported cases to model prevalence. We developed an R package ‘rightTruncation’ to make
implementation of these likelihood methods available for wider use [15].

�e data on individual cases in BC (Fig 1) give counts ℎ=A of the number of individuals
whose case was reported (test was positive) at the end of day A and whose symptoms are es-
timated to have started on day =. If day # is the �nal day of these data, then the full data set is
{ℎ=A }==0,1,2,...,# ;=≤A≤# , where, by de�nition, ℎ=A = 0 for A < = because a case cannot be reported
before the start of symptoms for these data. �e counts are right-truncated on day # , since there
are individuals whose symptoms started on day = who will be reported in the future (a�er # ), but
we do not yet know when. �e cases are considered to be reported at the end of day A because
there are values of ℎ== > 0.

We assume a Weibull distribution for the delay time between symptom onset and reporting
of a case. A Weibull distribution was motivated by �ndings [16] that it was a be�er �t than the
gamma or lognormal distributions to early data from Wuhan, China, on incubation periods of
COVID-19, though note that we are ��ing delay to reporting not the incubation period. Further-
more the Weibull parameters have a direct interpretation in terms of a failure model; we �nd that
the shape parameter is > 1, indicating that the probability of reporting increases with time, con-
sistent with, for example, worsening symptoms. �en the probability of a case whose symptoms
start on day = being reported on day A ≥ = is

?′=A =

∫ A+1

A

F (g′ − =; _, :)dg′ (8)

=

∫ A−=+1

A−=
F (g ; _, :)dg, (9)

where the probability density function for the Weibull distribution with shape : > 0 and scale
_ > 0 is

F (g ; _, :) =


:

_

(g
_

):−1
e−(g/_)

:

, g ≥ 0,

0, g < 0.

(10)

�e integral in (9) is needed because the Weibull is a continuous function of time (and time is
continuous in the di�erential equation model). We de�ne the cumulative distribution function as

, (G ; _, :) = P(- ≤ G ; _, :) =
∫ G

0
F (g ; _, :)dg . (11)

�en
?′=A =, (A − = + 1) −, (A − =), (12)

where we have dropped the explicit _ and : in, (·) for clarity.
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Equation (9) holds for A > # , but the data are only available up to A = # . Consider that today
is day # = 5, then we have a matrix of ?′=A values:

(?′=A ) =

©­­­­­­­«

?′00 ?′01 ?′02 ?′03 ?′04 ?′05 | ?′06 ?′07 ...

0 ?′11 ?′12 ?′13 ?′14 ?′15 | ?′16 ?′17 ...

0 0 ?′22 ?′23 ?′24 ?′25 | ?′26 ?′27 ...

0 0 0 ?′33 ?′34 ?′35 | ?′36 ?′37 ...

0 0 0 0 ?′44 ?′45 | ?′46 ?′47 ...

0 0 0 0 0 ?′55 | ?′56 ?′57 ...

ª®®®®®®®¬
. (13)

�e probabilities in each row sum to 1 (since every case will eventually become reported, else it
would not become a ‘case’). �e cases to the right of the vertical dashed line are the ones that we
do not yet have data on; for example, people whose symptoms started on day 1 and whose case
will be reported tomorrow (day 6, i.e. ?′16).

We need to calculate ?=A , the probability that a case that is reported on day A exhibited the
onset of symptoms on day =. �is requires taking the values in the above matrix that are to the
le� of the dashed line, and normalising each column such that it sums to 1, i.e.

?=A =
?′=A∑A
8=0 ?

′
8A

, =, A ≤ # . (14)

�e denominator is
A∑
8=0

?′8A =

A∑
8=0
[, (A − 8 + 1) −, (A − 8)]

= , (A + 1) −, (0)
= , (A + 1), (15)

such that
?=A =

, (A − = + 1) −, (A − =)
, (A + 1) , =, A ≤ # . (16)

For # = 5 we have the matrix of ?′=A values:

(?=A ) =

©­­­­­­­«

?00 ?01 ?02 ?03 ?04 ?05
0 ?11 ?12 ?13 ?14 ?15
0 0 ?22 ?23 ?24 ?25
0 0 0 ?33 ?34 ?35
0 0 0 0 ?44 ?45
0 0 0 0 0 ?55

ª®®®®®®®¬
, (17)

which is an upper triangular matrix of size 6× 6, i.e. (# + 1) × (# + 1). With an extra day of data
(se�ing # = 6) the matrix has an extra row (people with onset of symptoms on day 6 can now
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be reported) and an extra column (the reported values on day 6):

(?=A ) =

©­­­­­­­­­«

?00 ?01 ?02 ?03 ?04 ?05 ?06
0 ?11 ?12 ?13 ?14 ?15 ?16
0 0 ?22 ?23 ?24 ?25 ?26
0 0 0 ?33 ?34 ?35 ?36
0 0 0 0 ?44 ?45 ?46
0 0 0 0 0 ?55 ?56
0 0 0 0 0 0 ?66

ª®®®®®®®®®¬
. (18)

Given the data ℎ=A and these probabilities, we develop a multinomial log-likelihood function
[17], adapting the approach of [18], to estimate the parameters _ and: . �e log-likelihood function
for _ and : , given the counts {ℎ=A }, is

; (_, : |{ℎ=A }) = log

[
#∏
==0

#∏
A==

?ℎ=A=A

]
(19)

=

#∑
==0

#∑
A==

ℎ=A log?=A (20)

=

#∑
==0

#∑
A==

ℎ=A

{
log

[
, (A − = + 1) −, (A − =)

]
− log, (A + 1)

}
, (21)

where the , (·) terms depend on _ and : . �is is maximised numerically to give maximum
likelihood estimates _MLE and :MLE that are used in the di�erential equation model.

A key point to realise is that the de�nitions of ?=A for A = 0 to 5 (columns 1–6) are the same in
(17) and (18), but their values will change from (17) to (18) because ��ing the extra data from day 6
will update _MLE and :MLE, which a�ects all the estimated values of the probabilities. Also, not all
of the daily reported cases used in the di�erential equation model have details regarding onset of
symptoms, i.e.

∑#
==0 ℎ=A ≤ �A . Using the available data we obtain estimates (with 95% univariate

con�dence intervals) of _MLE = 9.85 (9.30 − 10.46) and :MLE = 1.73 (1.60 − 1.86), as shown in
Figure B. Using the maximum likelihood estimates, the mean delay is 8.78 days. �is is one day
longer than the data’s raw mean (7.79 days) due to the right truncation (Figure B). �ese values
were estimated on April 11 2020 using the 535 cases between February 29 and April 2, and used to
parameterise the di�erential equation model. Due to a lag in the data being compiled, as of May 11
2020 there are now 667 cases between February 29 and April 2 that have dates of symptom onset.
Note that these are what are shown in Figure B, with the �t using _MLE = 9.84 and :MLE = 1.75
(which give a mean delay of 8.77 days). �ese are essentially unchanged (di�erences of ≤ 0.02)
from the values estimated on April 11 that we used in the di�erential equation model.

For the New Zealand data on delays between symptom onset and reporting of cases (which
are not publicly available), A. Lustig and M. Plank (pers. comm.) �t the delay distribution to NZ
case reporting data using our R package. �e resulting estimates are _MLE = 7.82 and :MLE = 1.53,
giving a mean delay of 7.04 days, which is 1.73 days shorter than for the BC data.

In the di�erential equation model, time is continuous and de�ned such that�A , the number of
recorded cases on day A , is equal to the number of cases recorded by the end of day A . �e number
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Figure B: Histograms of delays between onset of symptoms and a case being reported, from the
case-speci�c data for British Columbia (le�) and New Zealand (right). �e red lines show the
maximum likelihood �t of the Weibull distribution, taking into account the right-truncation of
the data. For British Columbia, the distribution estimates longer delays (mean of 8.78 days) than
shown in the data (mean of 7.79 days) due to the �t accounting for right-truncation—there has
not yet been the opportunity to record many long delays (Fig 1).

of people per day who become symptomatic throughout day = is the total number moving from
the �2 and �2d compartments to the � and �d compartments, which is∫ =

=−1
:2

[
�2(g) + �2d(g)

]
dg . (22)

�e expected number of cases that are reported on day A is then

`A = kA

A∑
==1

∫ =

=−1
:2

[
�2(g) + �2d(g)

]
F (A − g)dg (23)

= kA

∫ A

0
:2

[
�2(g) + �2d(g)

]
F (A − g)dg, (24)

wherekA represents the sampling fraction on day A andF (·) represents the Weibull distribution
with parameters _MLE and :MLE. If kA = 1 then all estimated infectious people are tested and
then become reported cases;kA < 1 represents a reduction in expected cases on day A due to not

11



everyone being tested. By changing variables g = A − B , this becomes

`A = −kA
∫ 0

A

:2

[
�2(A − B) + �2d(A − B)

]
F (B)dB (25)

= kA

∫ A

0
:2

[
�2(A − B) + �2d(A − B)

]
F (B)dB . (26)

�e di�erential equation model is started from a time earlier than A = 0, so the integration here
can go back further because the model calculates, for example, �2(−1); A < 0 does not occur in
the above likelihood calculations because, by de�nition, there are no data for such times. �is
requires se�ing some maximum delay between symptom onset and a case being reported that is
large enough for F (B) to be negligible. Based on Figure B we use a maximum delay of 45 days
(the 99.99992% quantile), giving

`A = kA

∫ 45

0
:2

[
�2(A − B) + �2d(A − B)

]
F (B)dB, (27)

which is calculated and compared to the data (�A ) via the negative binomial observation model.
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Model Validation

Figure C: Simulation testing the ability to recover time series of reported cases. Dashed lines rep-
resent the true simulated time series. Solid lines represent means of the posterior. Dots represent
observed simulated data. Shaded ribbons represent 50% and 90% credible intervals on new ob-
servations and should ideally encompass 50% and 90% of the simulated data points, respectively.
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Figure D: Simulation testing the ability to recover parameter values. �e parameter '0b is the
basic reproductive number of the model without interventions. �e parameter q is the (inverse)
dispersion parameter of the negative binomial observationmodel. �e fraction of normal contacts
is 52. �e “violins” illustrate the posterior density distribution across 16 simulation examples. �e
true values used in the simulation are indicated by the horizontal black lines.
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Supplemental Results

Table C: Posterior means, quantiles, e�ective sample sizes (ESS), and potential scale reduction
factors ('̂) for the main model �t (Fig. 3). �e chains are consistent with convergence as '̂ ap-
proaches 1.

Parameter Mean 2.5% 50% 97.5% ESS '̂

'0b 2.95 2.88 2.95 3.02 2685.3 1.002
52 0.22 0.08 0.22 0.36 2697.0 1.001
q 6.86 3.39 6.52 12.37 3410.0 1.002
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Figure E: Posterior distributions of the underlying state variables. �e time-dependent variables
are the numbers of individuals who are: susceptible ((), exposed to the virus, asymptomatic and
not infectious (�1), exposed, asymptomatic and infectious (�2), infectious (� ), quarantined (&),
and recovered and deceased ('). Recovered individuals are assumed to be immune. �ere are
analogous variables for individuals practising physical distancing, represented by subscript d,
i.e., (d, �1d, �2d, �d, &d, and 'd.
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Figure F: Example posterior-predictive replicates from the model �t. �e �rst panel (red line)
represents the observed data. All other panels represent example draws from the posterior-
predictive distribution. Numbers above panels represent randomly selected Markov chain Monte
Carlo (MCMC) iterations. �is plot helps evaluate whether the observed data are consistent with
data generated by the model.
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Figure G: Trace plots of MCMC (Markov chain Monte Carlo) samples from parameter distri-
butions to assess chain convergence. �e panel labelled “R0” actually refers to '0b. �e panel
labelled “phi[1]” refers to the (inverse) dispersion parameter q from the negative binomial obser-
vation model.
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Figure I: Epidemiological curves for �ve scenarios of relaxing distancing measures (beginning
on April 12 2020) that are insu�cient to keep the prevalence from growing. Stronger measures
“�a�en the curve”, as would be expected. Lines represent 20 draws from the joint posterior dis-
tribution. Grey region denotes future dates during which the relaxed distancing measures are
applied. Inset box magni�es the lower-le� region of the plot to show the modelled prevalence
from March 1 to July 1 2020—the initial curve is imperceptible on the main axes. Note: Model
prevalence depends on our assumptions about underestimation, incubation period, and the dura-
tion of infection, none of which we can estimate well from these data (Figure M).�is model does
not include individuals who do not develop symptoms. Much higher values of the prevalence are
consistent with our data.
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Figure J: Linear regression of [the slope of log(prevalence) over days (for the last 30 days of the
projection)] vs. [fraction of normal contacts]. Vertical dashed line indicates the critical value be-
low which the rate of change of prevalence becomes positive. Dots represent individual posterior
draws.
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Table D: Posterior means, quantiles, e�ective sample sizes (ESS), and potential scale reduction
factors ('̂) for model �ts to regions other than BC (Fig. 5). �e chains are consistent with conver-
gence as '̂ approaches 1. �e parameters “52 ramp start” and “52 ramp end” refer to the estimated
days since the starting date of the data (Table B) that the physical distancing contact fraction (52)
begins and �nishes being linearly “ramped in” from the initial '0b. �ese ramp date parameters
were not estimated in the main BC model �t.

Region Parameter Mean 2.5% 50% 97.5% ESS '̂

New York '0b 6.57 6.42 6.57 6.72 772 1.01
New York 52 0.18 0.12 0.18 0.23 497 1.00
New York q 4.37 2.99 4.33 6.14 602 1.01
New York 52 ramp start 11.69 8.26 11.65 15.04 546 1.00
New York 52 ramp end 25.48 20.90 25.37 30.70 476 1.00

Florida '0b 4.74 4.64 4.73 4.85 1401 1.00
Florida 52 0.32 0.28 0.32 0.37 1325 1.00
Florida q 5.55 3.47 5.41 8.34 1515 1.00
Florida 52 ramp start 13.67 11.21 13.67 16.26 1394 1.00
Florida 52 ramp end 27.50 24.21 27.47 30.82 1141 1.00

Washington '0b 5.02 4.93 5.02 5.13 1407 1.00
Washington 52 0.30 0.28 0.30 0.32 1297 1.00
Washington q 10.68 6.91 10.52 15.53 1304 1.00
Washington 52 ramp start 8.58 7.21 8.53 10.21 1542 1.00
Washington 52 ramp end 18.63 16.21 18.64 21.14 1378 1.00

New Zealand '0b 8.98 8.74 8.98 9.22 847 1.01
New Zealand 52 0.07 0.03 0.07 0.11 742 1.00
New Zealand q 11.10 3.85 8.98 30.98 789 1.00
New Zealand 52 ramp start 3.19 2.65 3.17 3.83 1141 1.00
New Zealand 52 ramp end 12.31 10.62 12.30 14.00 736 1.01

California '0b 5.08 4.97 5.07 5.19 2430 1.00
California 52 0.41 0.38 0.41 0.44 2176 1.00
California q 8.51 5.46 8.36 12.24 3051 1.00
California 52 ramp start 7.75 6.25 7.72 9.41 2868 1.00
California 52 ramp end 24.66 21.28 24.71 27.93 1998 1.00
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Sensitivity Analysis
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Figure K: Sensitivity of prevalence and case-count projections, '0b, and the fraction-of-normal-
contacts estimate (52) to three sets of alternative parameter values: (1) � = 4, :1 = 1/4, DA = 0.2
(shorter duration); (2) � = 5, :1 = 1/5, DA = 0.3/0.7 (a lower proportion of people physical
distancing: 70% vs. 83% in the main analysis); and (3) � = 6, :1 = 1/6, DA = 0.2 (longer dura-
tion). Histograms illustrate the posterior distribution of MCMC samples. Dashed vertical line
represents the threshold value below which an exponential increase occurs.
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Figure L: Prevalence and case-count projections, '0b, and the fraction-of-normal-contacts esti-
mate (52) with distancing-rate parameters D3 = 1 and DA = 0.2. �e ratio 4 is the same as at
baseline but these rates are 10 times higher. �e model dynamics are sensitive to 4 but not to the
choice of rates. Accordingly, these estimates are as in Fig 3.
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Figure M: Sensitivity of prevalence and case-count projections, '0b, and the fraction of normal
contacts (52) to assumed fractions of positive cases sampled. “sampFrac1” refers to the assumed
sample fraction before March 14, 2020 and “sampFrac2” refers to the assumed sample fraction on
and a�er March 14, 2020. Histograms illustrate the posterior distribution of MCMC samples.
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Figure N: Alternative model ��ed with a random walk on the fraction of positive cases sampled.
(A) Estimated sampled fraction random walk. �e random walk starts on the ��h day (it is �xed
at 0.1 before then) and then evolves with a �xed standard deviation of 0.1. We placed a Beta prior
on the initial value with a mean and standard deviation of 0.2 and 0.2. (B) Resulting model �t
with a sampled-fraction random walk. Shaded ribbons represent 50% and 90% credible intervals.
�ick lines represent medians (A) and means (B) of the posterior distribution. Although the shape
in panel A is plausible, we deemed the scale of the estimated values to be implausibly high and
therefore used a �xed value of 0.3 a�er day 14 in the main models in this paper.
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